39 research outputs found

    Motion frozen 18F-FDG cardiac PET

    Get PDF
    BackgroundPET reconstruction incorporating spatially variant 3D Point Spread Function (PSF) improves contrast and image resolution. "Cardiac Motion Frozen" (CMF) processing eliminates the influence of cardiac motion in static summed images. We have evaluated the combined use of CMF- and PSF-based reconstruction for high-resolution cardiac PET.MethodsStatic and 16-bin ECG-gated images of 20 patients referred for (18)F-FDG myocardial viability scans were obtained on a Siemens Biograph-64. CMF was applied to the gated images reconstructed with PSF. Myocardium to blood contrast, maximum left ventricle (LV) counts to defect contrast, contrast-to-noise (CNR) and wall thickness with standard reconstruction (2D-AWOSEM), PSF, ED-gated PSF, and CMF-PSF were compared.ResultsThe measured wall thickness was 18.9 ± 5.2 mm for 2D-AWOSEM, 16.6 ± 4.5 mm for PSF, and 13.8 ± 3.9 mm for CMF-PSF reconstructed images (all P < .05). The CMF-PSF myocardium to blood and maximum LV counts to defect contrasts (5.7 ± 2.7, 10.0 ± 5.7) were higher than for 2D-AWOSEM (3.5 ± 1.4, 6.5 ± 3.1) and for PSF (3.9 ± 1.7, 7.7 ± 3.7) (CMF vs all other, P < .05). The CNR for CMF-PSF (26.3 ± 17.5) was comparable to PSF (29.1 ± 18.3), but higher than for ED-gated dataset (13.7 ± 8.8, P < .05).ConclusionCombined CMF-PSF reconstruction increased myocardium to blood contrast, maximum LV counts to defect contrast and maintained equivalent noise when compared to static summed 2D-AWOSEM and PSF reconstruction

    Assessment of different quantification metrics of [¹⁸F]-NaF PET/CT images of patients with abdominal aortic aneurysm

    Get PDF
    Background: We aim to assess the spill-in effect and the benefit in quantitative accuracy for [18F]-NaF PET/CT imaging of abdominal aortic aneurysms (AAA) using the background correction (BC) technique. Methods: Seventy-two datasets of patients diagnosed with AAA were reconstructed with ordered subset expectation maximization algorithm incorporating point spread function (PSF). Spill-in effect was investigated for the entire aneurysm (AAA), and part of the aneurysm excluding the region close to the bone (AAAexc). Quantifications of PSF and PSF+BC images using different thresholds (% of max. SUV in target regions-of-interest) to derive target-to-background (TBR) values (TBRmax, TBR90, TBR70 and TBR50) were compared at 3 and 10 iterations. Results: TBR differences were observed between AAA and AAAexc due to spill-in effect from the bone into the aneurysm. TBRmax showed the highest sensitivity to the spill-in effect while TBR50 showed the least. The spill-in effect was reduced at 10 iterations compared to 3 iterations, but at the expense of reduced contrast-to-noise ratio (CNR). TBR50 yielded the best trade-off between increased CNR and reduced spill-in effect. PSF+BC method reduced TBR sensitivity to spill-in effect, especially at 3 iterations, compared to PSF (P-value ≤ 0.05). Conclusion: TBR50 is robust metric for reduced spill-in and increased CNR
    corecore